New Lie-Algebraic and Quadratic Deformations of Minkowski Space from Twisted Poincaré Symmetries

نویسنده

  • Jerzy Lukierski
چکیده

We consider two new classes of twisted D=4 quantum Poincaré symmetries described as the dual pairs of noncocommutative Hopf algebras. Firstly we investigate the two-parameter class of twisted Poincaré algebras which provide the Liealgebraic noncommutativity of the translations. The corresponding star-products and new deformed Lie-algebraic Minkowski spaces are introduced. We discuss further the twist deformations of Poincaré symmetries generated by the twist with its carrier in Lorentz algebra. We describe corresponding deformed Poincaré group which provides the quadratic deformations of translation sector and define the quadratically deformed Minkowski space-time algebra. Supported by KBN grant 1P03B 01828

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Deformations of Einstein’s Relativistic Symmetries

We shall outline two ways of introducing the modification of Einstein’s relativistic symmetries of special relativity theory the Poincaré symmetries. The most complete way of introducing the modifications is via the noncocommutative Hopfalgebraic structure describing quantum symmetries. Two types of quantum relativistic symmetries are described, one with constant commutator of quantum Minkowski...

متن کامل

From noncommutative space-time to quantum relativistic symmetries with fundamental mass parameter

We consider the simplest class of Lie-algebraic deformations of spacetime algebra, with the selection of κ-deformations as providing quantum deformation of relativistic framework. We recall that the κ-deformation along any direction in Minkowski space can be obtained. Some problems of the formalism of κ-deformations will be considered. We shall comment on the conformal extension of light-like κ...

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

Snyder Space - Time : K - Loop and Lie Triple System ?

Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2, R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth “K-loop”, a non-associative generalization of Abelian Lie groups, and its infinitesimal counterpart given by the Lie triple system are the key ...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008